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BRAIN-MACHINE INTERFACE (BMI) WITH
USER INTERFACE (UI) AWARE
CONTROLLER

CROSS-REFERENCES TO RELATED
APPLICATIONS

NOT APPLICABLE

STATEMENT AS TO RIGHTS TO INVENTIONS
MADE UNDER FEDERALLY SPONSORED
RESEARCH AND DEVELOPMENT

NOT APPLICABLE
BACKGROUND

1. Field of the Invention

Embodiments of the present invention generally relate to
healthcare information and communication technology spe-
cially adapted for the operation of medical devices. More
specifically, embodiments relate to interpreting neural sig-
nals from a neural implant.

2. Description of the Related Art

Implantable devices can be implanted into neurological
tissue, such as the brain, to form a brain-computer interface.
In certain instances, the implantable devices can contain a
biocompatible substrate with conduits for stimulation of
neurons and/or recording neural signals. Such neural signals
may be faint, analog, unprocessed signals, and may be
preprocessed through analog-to-digital conversion, aggrega-
tion, and conversion to data packets and/or to human- or
machine-readable formats, before being analyzed or other-
wise processed by a computer within the implant and/or
transmitted to another computer outside of the implant. The
computer may include a BMI decoder for decoding the
neural signals. The BMI decoder may output commands
based on the decoded neural signals, such as commands for
interacting with a graphical user interface or manipulating a
physical device.

However, there are various challenges associated with
decoding neural signals for outputting commands. For
example, a machine learning-based BMI decoder may only
be trained offline. Models for decoding the neural signals
may only be updated with data relating to errors in decoding
signals long after the errors occurred.

Additionally, any particular BMI decoder may be superb
at decoding neural signals for one type of activity but be
almost useless when used for another type of activity.
Attempting to train a machine learning-based BMI in the
other activity may dilute, or at least suboptimize, the training
for the initial activity.

There is a need in the art for better, more robust BMI
decoders that are good at many activities and can help users
attain more independence.

BRIEF SUMMARY

Brain-machine interface (BMI) devices can be implanted
into or worn by a subject. The BMI devices may transmit
neural signals detected from the brain of the subject to a
BMI decoder. The BMI decoder may translate the neural
signals into a command based on an activity that the subject
is attempting to perform. The BMI decoder may utilize a
controller that incorporates feedback from the activity envi-
ronment and from external sensors to adjust commands and
switch between and/or update models in the BMI decoder.
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Some embodiments of the present disclosure are related to
a method of interpreting signals from a brain-machine
interface (BMI). The method can include receiving neural
signals from a brain of a subject into a BMI decoder,
determining an activity change of the subject based on a
sensor, routing the neural signals from a first model to a
second model in the BMI decoder based on the determined
activity change, translating, using the second model in the
BMI decoder, the neural signals into a command, and
sending the command to a controller.

The activity change can be a change between the subject
interfacing with a graphical user interface (GUI) to the
subject manipulating a physical device.

The activity change can be from the subject interfacing
with a GUI to the subject manipulating a physical device.

Interfacing with the GUI can involve moving a cursor,
entering text, or selecting words, and the manipulating a
physical device involves operating a robotic arm or steering
a wheelchair.

The method can additionally include converting, through
an analog-to-digital converter (ADC), voltages or currents
from the electrodes, detecting spikes from the voltages or
currents, and forwarding the spikes as the neural signals.

The first or second model can include binning neural
spikes as a function of frequency.

Some embodiments can include a method of interpreting
signals from a BMI. The method can include receiving a first
set of neural signals from a brain of a subject into a BMI
decoder, translating, using a first model in the BMI decoder,
the first set of neural signals into a first command, detecting,
from further neural signals from the subject, a frustration
from the subject, inhibiting the first command based on the
detecting, routing a second set of neural signals from the
brain of the subject to a second model in the BMI decoder
based on the detecting, interpreting, using the second model,
the second set of neural signals into a second command, and
sending the second command.

The inhibiting can include sending a cancelation of the
first command.

The second command can be sent to a cursor, a keyboard,
a robotic arm, or a wheelchair.

The neural signals can pass through metal electrodes in a
cerebral cortex of the brain.

The method can additionally include converting, through
an analog-to-digital converter (ADC), voltages or currents
from the electrodes, detecting spikes from the voltages or
currents, and forwarding the spikes as the neural signals.

The first or second model can include binning neural
spikes as a function of frequency.

Some embodiments include a method for adjusting an
implanted or wearable BMI device. The method can include
receiving neural signals from a brain of a subject into an
implanted or wearable BMI device, determining an activity
change of the subject based on a sensor, switching from a
first compression algorithm to a second compression algo-
rithm based on the determined activity change, compressing,
using the second compression algorithm in the BMI device,
the neural signals into a data stream, and sending the data
stream to a BMI controller off-board the subject.

The neural signals can pass through metal electrodes in a
cerebral cortex of the brain.

The method can additionally include converting, through
an analog-to-digital converter (ADC), voltages or currents
from the electrodes, detecting spikes from the voltages or
currents, and forwarding the spikes as the neural signals.

The first or second model can include binning neural
spikes as a function of frequency.
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BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of a brain-machine interface
(BMI) decoder interpreting signals from a BMI device
according to some embodiments.

FIG. 2 illustrates a cross section of a human head with a
system of three BMI implants set within holes in the
subject’s cranium (skull bone) according to some embodi-
ments.

FIG. 3 is a cross section view of implanted electrodes
according to some embodiments.

FIG. 4 illustrates an example of a graph of neural voltage
over time according to some embodiments.

FIG. § is a diagram of a BMI decoder interpreting signals
from a BMI device according to some embodiments.

FIG. 6 is a diagram of a BMI decoder and a user-interface
(UT) aware controller according to some embodiments.

FIG. 7 is a diagram of the UI aware controller of FIG. 6.

FIG. 8 is a flowchart of a process to interpret signals from
a BMI according to some embodiments.

FIG. 9 is a flowchart of another process to interpret
signals from a BMI according to some embodiments.

FIG. 10 is a flowchart of a process for adjusting an
implanted or wearable BMI device according to some
embodiments.

DETAILED DESCRIPTION

A brain-machine interface (BMI) decoder receives neural
signals from neural implants. The BMI decoder may inter-
pret the neural signals to cause a controller to perform
actions, such as manipulating a physical device or interfac-
ing with a graphical user interface (GUT). The BMI decoder
may include models for various activities to interpret the
neural signals into commands. The BMI decoder may utilize
an environment-aware controller to perform the commands.
The controller may receive feedback at varying frequencies
from the environment in which the activity is being per-
formed, as well as external information such as from sen-
sors. The controller and the BMI decoder may be adjusted in
real time based on the feedback. For example, the models
may be re-trained based on feedback from the environment.
In some examples, the controller and the BMI decoder may
determine a change in activities based on the feedback. For
example, the BMI decoder may switch between decoding
neural signals for controlling a robotic arm to decoding
neural signals for controlling a wheelchair.

FIG. 1 illustrates user with a graphical user interface 102
and motorized wheelchair 108. A brain-machine interface
(BMI) decoder interprets signals from a BMI device 104.
The BMI device 104 may be a BMI implant set within the
skull 106 of a subject or may be a wearable device around
a the subject’s head. The BMI decoder may receive and
decode neural signals from the BMI device 104 to output
commands based on the neural signals. For example, the
subject’s neural signals may be decoded to operate wheel-
chair 108 or move a cursor on a GUI screen 102.

FIG. 2 illustrates a human head with system 200 of three
BMI implants 202 set within holes in the subject’s cranium
(skull bone). They are located in different lobes, or areas of
the brain, to capture or stimulate targeted sections. The
holes, called “burr holes,” are about 8 millimeters in diam-
eter and drilled using specialized surgical tools. During
surgery, thin film electrodes, sometimes numbering in the
hundreds or thousands, are delicately inserted into the cortex
at precise locations to avoid vasculature. The thin film
electrodes merge into ribbon cable at one end, which in turn
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is pre-connected to the implant. Each implant is carefully set
on top of the ribbon cable to cover the burr hole.

Within each implant 202 is circuitry, including integrated
circuit (IC) chips, capacitors, and other components. The ICs
receive from, and/or transmit to, the thin film electrodes that
are surgically implanted within the subject’s cranium. The
ICs can include analog-to-digital converters (ADC) and/or
digital-to-analog converters (DAC) in order to convert ana-
log signals in the brain to or from digital signals of a
computer.

Sitting in the burr hole, the bottom of each implant 202,
and the entire implant, are awash with cerebrospinal fluid
(CSF) and other body fluids. These fluids are corrosive to the
silicon in the IC chips as well as other circuit components
and must be sealed away from them. Therefore, the com-
ponents are isolated within the implant in a mostly-glass or
polymer container that is biologically neutral. The compo-
nents are carefully positioned to interface with the thin film
ribbon cable of what may be thousands of individual elec-
trodes.

FIG. 3 is a cross section view of implanted electrodes in
accordance with an embodiment. BMI implant 302 connects
with thin film cable 304. Thin film cable 304 comprises
electrodes 316 embedded in flexible polymer ribbon 318.
Thin film cable 304 was manufactured using additive and
subtractive microfabrication techniques, such as electroplat-
ing and photolithography. Thus, its electrodes 316 may have
a rectangular cross section. The electrodes 316 can be
extremely small, on the order of tens or hundreds of microns
in effective diameter.

While joined at the upper end, thin film cable 304 splits
into separate insulated wires, or threads, before descending
into the brain. These different threads may have multiple
electrodes 316 along their lengths that probe at different
depths of the brain.

The BMI implant 302 may include an ADC 306 for
receiving signals from the electrodes 316. The ADC 306 can
convert voltages or currents received from the electrodes
316 and may detect spikes in the voltages or currents. The
spikes can be forwarded as neural signals to a BMI decoder.

Example Biological Signals

FIG. 4 illustrates an example of a graph 400 of neural
voltage over time, including spikes 402 (e.g., neural spikes).
Neural spikes are associated with a characteristic change in
sample amplitude 404 over time 406. The sample amplitude
may, for example, represent voltage, power, or frequency. As
a specific example, the sample amplitude 404 is voltage in
millivolts (mV).

A spike 402 is preceded by excitation and inhibition of a
membrane. Cells such as neurons transport electrical signals
using action potentials. An action potential is characterized
by a voltage change across a cell membrane due to the flow
of ions into and out of the neuron. Membranes are permeable
to positively and negatively charged ions. The membranes
are generally in a resting state. During depolarization, volt-
age-gated ion channels open due to an electrical stimulus. As
ions rushes back into the cell, the charged ions modify the
charge inside the cell (e.g., an influx of positive sodium ions
raise the charge inside the cell from negative to positive). If
a threshold is reached, then an action potential is produced.
Once the cell has been depolarized, the voltage gated ion
channels close. As charged ions exit the cell, the membrane
potential falls and starts to approach the resting potential.
Typically, repolarization overshoots the resting membrane
potential, making the membrane potential more negative
(hyperpolarization). An action potential is followed by a
refractory period.
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As illustrated in FIG. 4, a spike 402 can be characterized
by characteristic rises and falls in sample amplitude. A signal
may start out with an initial resting value, followed by a first
positive change in sample amplitude 408, followed by a
reduction in sample amplitude 410 below the resting value,
and a second positive change in sample amplitude 412. The
second positive change in sample amplitude 412 is generally
greater than the first positive change in sample amplitude
408. In some embodiments, spikes in a biological signal are
viewed in a shape space based on these characteristic
changes in sample amplitude over time.

FIG. 5 is a diagram of a BMI decoder 502 interpreting
neural signals 504 from a BMI device according to some
embodiments. The BMI device may be implanted within or
worn by a subject 505 producing the neural signals 504. The
BMI decoder 502 may decode the neural signals to deter-
mine actions to be performed for various activities. For
example, the activities can include interacting with a graphi-
cal user interface (GUI) or manipulating a physical device.
Gyroscope and inertial measurement unit (IMU) 506 track
the user’s head or body movements.

The BMI decoder 502 can include a model associated
with each activity for translating neural signals into com-
mands. For example, as depicted in the figure, the BMI
decoder 502 includes a cursor model 508 for translating
neural signals into movement and clicks of a cursor on a
GUI, a typing model 510 for translating neural signals into
typed or selected words on a GUI, a robotic arm model 512
for translating neural signals into movement of a robotic
arm, and a wheelchair model 514 for translating neural
signals into movement of a wheelchair. After translating the
neural signals 504 using the appropriate model, the BMI
decoder 502 can output a command based on the translated
signals to a controller 516. The controller 516 can perform
the command. Examples of commands performed can
include the controller 516 causing a cursor 518 on a GUI to
click a button or move the cursor 518 to a certain location
at a certain velocity. It can also cause a word to be typed or
backspaced using a keyboard 520 on a GUI, cause a robotic
arm 522 to pick up or manipulate an object, or cause a
wheelchair 524 to move forward at a certain velocity for a
certain distance.

In some examples, the BMI decoder 502 can determine an
activity change, such as a change from controlling the
movement of a cursor 518 on a GUI to controlling the
movement of a wheelchair 524. It can do this by interpreting
movements from the IMU 506, for example when the user’s
head shifts to looking beyond the screen, or by other signals.
In response to determining the activity change, the BMI
decoder 502 can route the neural signals 504 from a first
model to a second model, such as from the cursor model 508
to the wheelchair model 514. The BMI decoder 502 may
then translate the neural signals 504 into a command using
the wheelchair model 514 and may send the command to the
controller 516. In some examples, the BMI decoder 502 may
determine the activity change using a user-interface (UI)
aware controller.

FIG. 6 is a diagram of a BMI decoder 602 and a
user-interface (UI) aware controller 604 according to some
embodiments. The BMI decoder 602 can receive neural
data, such as neural signals from a BMI. The BMI decoder
602 can include a pre-processing block 606, an adaptive
component 608, and a robust estimator 610. The pre-pro-
cessing block 606 can receive the neural signals and pre-
process the neural signals in preparation for translating the
neural signals. For example, the pre-processing block 606
may bin neural spikes within the neural signals based on
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their frequency. The pre-processing block 606 may forward
the processed neural signals to the adaptive component 608.

The adaptive component 608 may include models for
translating the neural signals into commands, such as the
models described above in FIG. 5. The adaptive component
608 may forward the translated neural signals to the robust
estimator 610.

The robust estimator 610 may estimate a command based
on the translated neural signals. The BMI decoder 602 may
send the command to the Ul-aware controller 604 for
performing the command in an environment 612, such as a
UI or a physical device.

In some examples, the models in the adaptive component
608 and the robust estimator 610 may be continuously
updated and trained using a model trainer 614 while the BMI
decoder 602 is outputting commands. The model trainer 614
may receive feedback from the Ul-aware controller 604,
which may be receiving or determining feedback from the
environment 612. In some examples, the feedback may be
received in varying frequencies. For example, high-fre-
quency feedback can include real-time information about the
environment 612 with which the subject is interacting. The
high-frequency feedback may be received every second or
multiple times per second. High-frequency feedback can
include the position and velocity of objects on a UL, such as
cursors, buttons, keyboards, etc. High-frequency feedback
can also include the position and movement of physical
objects, such as the movement of a robotic arm or the
position of an object near a robotic arm, which can be
detected using an external camera. Mid-frequency feedback
may be received every ten minutes. Mid-frequency feedback
may include interpretations of subject intention after mul-
tiple movements have occurred or a task has been com-
pleted. For example, mid-frequency feedback may include
information relating to multiple attempts to pick up a cup
with a robotic arm. Successes and failures in picking up the
cup with the robotic arm may be used by the model trainer
614 to update the adaptive component 608 and the robust
estimator 610 to perform the action more successfully in the
future. Low-frequency feedback may be received every 12
hours. Low-frequency feedback may include longer term
information that can be used to update a “multi-day” model
of the subject’s preferences.

FIG. 7 is a diagram of the Ul-aware controller 604 of FIG.
6. The Ul-aware controller 604 may be “aware” of the
translated neural signals from the BMI decoder 602. For
example, the Ul-aware controller 604 may be aware of the
type of activity being performed by the subject (such as
typing words on a keyboard or picking up a cup with a
robotic arm), the environment of the activity (such as a Ul,
the location of buttons on the UI, or the location of the cup
on a table), the history of the activity (such as recent links
opened on a browser), and the probability for certain com-
mands to be performed in the future based on the history and
environment. The Ul-aware controller 604 may also be
aware of external information feedback. The external infor-
mation can include structured information, such as software
or operating system data, and unstructured information, such
as audio from a microphone or video from a camera.

In some examples, the Ul-aware controller 604 may
adjust commands or determine activity changes based on the
neural signals or the feedback. For example, the Ul-aware
controller 604 may determine that a location of a cursor is
on top of a text field. The Ul-aware controller 604 may direct
the BMI decoder 602 (see FIG. 6) to route neural signals to
a keyboard model rather than a cursor model to output
keyboard commands. The Ul-aware controller 604 may also
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adjust commands based on the environment. For example,
the Ul-aware controller 604 may cause a cursor to snap to a
close target, such as a button. The speed and accuracy of the
cursor movement may be adjusted based on the density of
the Ul For example, interacting with a Ul displaying a web
page with two buttons may become faster but less accurate,
and interacting with a web page displaying multiple links
may become slower but more accurate.

In some examples, the Ul-aware controller 604 may
adjust commands based on a subject’s repeated behavior.
For example, if the Ul-aware controller 604 is outputting
commands to a robotic arm to pick up an object on a table,
the Ul-aware controller 604 may direct the robotic arm to
pick up a first drink rather than a second drink, based on a
subject’s history of preferring the first drink. The subject’s
preferences may be low-frequency feedback used to update
models over longer periods. In another example, the Ul-
aware controller 604 may adjust commands to automatically
perform actions based on the subject’s daily routine, such as
starting a video game at a certain time of day.

In some examples, the Ul-aware controller 604 may
adjust commands or determine activity changes based on
detected subject frustration or detected errors. For example,
the Ul-aware controller 604 may receive an indication of a
frustration from the subject, such a verbal noise of frustra-
tion detected by a microphone or a particular pattern of
neural spikes detected by the electrodes. The Ul-aware
controller 604 may inhibit the command, such as by can-
celing the command. The Ul-aware controller 604 may then
adjust the command or switch an activity based on the
frustration. For example, if the subject is trying to move a
cursor past a button but the Ul-aware controller 604 is
snapping the cursor to the button, the Ul-aware controller
604 may prevent snapping to close targets. If the subject is
trying to switch from interacting with a keyboard to moving
a wheelchair, the Ul-aware controller 604 can cause the BMI
decoder 602 to route neural signals from a keyboard model
to a wheelchair model.

In another example, the Ul-aware controller 604 may send
mid-frequency feedback based on multiple detected errors.
For example, the Ul-aware controller 604 may detect that
multiple backspace and delete commands have been
received in a keyboard environment. The Ul-aware control-
ler 604 may determine that erroneous commands may have
been output by the BMI decoder 602. The Ul-aware con-
troller 604 may send the mid-frequency feedback to the
model trainer 614 to update the keyboard model based on the
detected error.

In some examples, the Ul-aware controller 604 may
include models for adjusting commands received from the
BMI detector 602. For example, the Ul-aware controller 604
may include a language model to help a subject type faster.
The language model may predict probable next letters or
words based on recent letters and may display the predic-
tions to the subject. The subject may select the predictions,
which may be faster than typing out the letters or words. In
other examples, the Ul-aware controller 604 may incorpo-
rate external cues when adjusting commands. For example,
if the subject is operating a robotic arm, the Ul-aware
controller 604 may receive audio from a microphone of the
subject stating “I’'m hungry.” While the subject is reaching
for an object on a table, the Ul-aware controller 604 may
adjust a movement command for the robotic arm to priori-
tize picking up a sandwich on the table over picking up a
book on the table. In some examples, the Ul-aware control-
ler 604 may adjust commands based on a subject’s verbal
instructions, such as the subject stating “pick up the book.”
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In some examples, the BMI decoder 602 or the Ul-aware
controller 604 may adjust the efficiency of neural data
transmitted from the neural implant. Data rates received
from the neural implant may vary depending on the amount
of neural activity in the brain. High data rates may cause
bandwidth and latency issues, particularly when transmitting
over wireless connections such as a BLUETOOTH® con-
nection. In some examples, the neural signals can be
selected to prioritize sending relevant data based on the
current environment being controlled by neural signals from
the subject. For example, if the subject is currently control-
ling a cursor on a UI, the neural signals may be selected to
send only data relating to controlling a cursor. This can allow
for better data compression, lower power consumption, and
lower latency of the wireless connection by preventing
re-transmissions. In one example, the neural spikes from the
neural implant may be binned as a function of frequency.
Each bin may be ranked based on how informative the bin
is to the current activity. If the amount of neural data is
higher than a predetermined threshold, bins may be removed
from the neural signals based on the ranking by dropping the
least informative data first.

FIG. 8 is a flowchart of a process for interpreting signals
from a BMI according to some embodiments. Although
depicted as various steps occurring in a particular sequence
or order, this is not intended to be limiting. In certain
alternative embodiments, the steps may be performed in
some different order or some steps may also be performed in
parallel. In certain embodiments, the components discussed
in connection with the depicted method may be the same or
be configured in a similar manner as the components
described above.

In operation 802, neural signals are received from a brain
of a subject into a BMI decoder. The neural signals may pass
through metal electrodes in a cerebral cortex of the subject’s
brain. In some examples, voltages or currents from the
electrodes may be converted by an ADC. The ADC may
detect spikes from the voltages or currents and may forward
the spikes as neural signals to the BMI decoder.

In operation 804, the BMI decoder determines an activity
change of the subject based on a sensor. For example, the
sensor may be an external sensor such as a camera or
microphone, or it can be internally decoded signals from a
pattern of electrodes. A microphone may transmit a noise of
frustration or a voice command directing an activity change
to the BMI decoder. The activity change may be a change
between the subject interfacing with a GUI and the subject
manipulating a physical device. In some examples, the
subject interfacing with the GUI may include moving a
cursor, entering text, or selecting words. Manipulating the
physical device may include operating a robotic arm or
steering a wheelchair.

In operation 806, neural signals are routed from a first
model to a second model in the BMI decoder based on the
determined activity change. For example, if the activity
change is from the subject interfacing with a GUI to the
subject manipulating a physical device, the neural signals
may be routed from a model for interpreting GUT commands
to a model for interpreting physical device commands.

In operation 808, the neural signals are translated, using
the second model in the BMI decoder, into a command. For
example, the BMI decoder can use a cursor model to
translate the neural signals into a cursor movement and
velocity. In operation 810, the BMI decoder sends the
command to a controller. The controller can control a cursor
on a GUI according to the command. For example, the
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controller can move the cursor using the cursor movement
and velocity determined by the BMI decoder based on the
neural signals.

FIG. 9 is a flowchart of another process for interpreting
signals from a BMI according to some embodiments.
Although depicted as various steps occurring in a particular
sequence or order, this is not intended to be limiting. In
certain alternative embodiments, the steps may be per-
formed in some different order or some steps may also be
performed in parallel. In certain embodiments, the compo-
nents discussed in connection with the depicted method may
be the same or be configured in a similar manner as the
components described above.

In operation 902, a first set of neural signals from a brain
of a subject are received into a BMI decoder. Neural signals
may pass through metal electrodes in a cerebral cortex of the
subject’s brain. In some examples, voltages or currents from
the electrodes may be converted by an ADC. The ADC may
detect spikes from the voltages or currents and may forward
the spikes as neural signals to the BMI decoder.

In operation 904, the first set of neural signals are trans-
lated, using a first model in the BMI decoder, into a first
command. For example, the first command may be typing
letters using a keyboard onto a GUI. In operation 906, a
frustration from the subject is detected from further neural
signals from the subject. For example, neural signals inter-
preted as multiple repeated backspaces may indicate that the
subject is frustrated with the typing commands being out-
putted by the BMI decoder.

In operation 908, the first command is inhibited based on
the detecting. In some examples, inhibiting the first com-
mand may include sending a cancelation of the first com-
mand, such as canceling typing on a keyboard. In operation
910, a second set of neural signals from the brain of the
subject are routed to a second model in the BMI decoder
based on the detecting. For example, the second set of neural
signals may be routed to a wheelchair model for steering a
wheelchair, rather than typing on a keyboard. In operation
912, the second set of neural signals are interpreted, using
the second model, into a second command. For example, the
second model may be used to translate the second set of
neural signals into a second command comprising a forward
movement of the wheelchair with a certain velocity. In
operation 914, the BMI controller sends the second com-
mand.

FIG. 10 is a flowchart of a process for adjusting an
implanted or wearable BMI device according to some
embodiments. Although depicted as various steps occurring
in a particular sequence or order, this is not intended to be
limiting. In certain alternative embodiments, the steps may
be performed in some different order or some steps may also
be performed in parallel. In certain embodiments, the com-
ponents discussed in connection with the depicted method
may be the same or be configured in a similar manner as the
components described above.

In operation 1002, neural signals are received from a brain
of a subject into an implanted or wearable BMI device. For
example, the neural signals may pass through metal elec-
trodes in a cerebral cortex of the brain. In some examples,
voltages or currents from the electrodes may be converted
by an ADC. The ADC may detect spikes from the voltages
or currents and may forward the spikes as neural signals to
the BMI decoder. The neural spikes may be binned as a
function of frequency. In some examples, the neural signals
may be transmitted to the BMI decoder via a BLU-
ETOOTH® connection.
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In operation 1004, an activity change of the subject is
determined based on a sensor. For example, an activity
change may be a change from neural signals being inter-
preted into commands for moving a cursor to neural signals
being interpreted into commands for moving a robotic arm.
The sensor may be a microphone or camera that may detect
activity changes based on feedback from the subject.

In operation 1006, the BMI device switches from a first
compression algorithm to a second compression algorithm
based on the determined activity change. For example, the
first compression algorithm may be used based on a first
activity, such as moving a cursor. The first compression
algorithm may compress the neural signals based on the first
activity. For example, data that is unrelated to moving a
cursor may be discarded before the neural signals are
compressed and transmitted. After the activity change, the
BMI device may switch to the second compression algo-
rithm. The second compression algorithm may be associated
with a second activity, such as moving a robotic arm. The
second compression algorithm may prioritize different data
in the neural signals compared to the first compression
algorithm.

In operation 1008, the BMI device compresses, using the
second compression algorithm in the BMI device, the neural
signals into a data stream. For example, data that is unrelated
to moving a robotic arm may be discarded before the neural
signals are compressed. In operation 1010, the BMI device
sends the data stream to a BMI controller off-board the
subject. The BMI controller may perform a command based
on the data stream. For example, the BMI controller may
cause a robotic arm to move based on the neural signals from
the BMI device.

It should be appreciated that a brain implant or other
system and a respective control system for the brain implant
can have one or more microprocessors/processing devices
that can further be a component of the overall apparatuses.
The control systems are generally proximate to their respec-
tive devices, in electronic communication (wired or wire-
less) and can also include a display interface and/or opera-
tional controls configured to be handled by a user to monitor
the respective systems, to change configurations of the
respective systems, and to operate, directly guide, or set
programmed instructions for the respective systems, and
sub-portions thereof. Such processing devices can be com-
municatively coupled to a non-volatile memory device via a
bus. The non-volatile memory device may include any type
of memory device that retains stored information when
powered off. Non-limiting examples of the memory device
include electrically erasable programmable read-only
memory (“ROM”), flash memory, or any other type of
non-volatile memory. In some aspects, at least some of the
memory device can include a non-transitory medium or
memory device from which the processing device can read
instructions. A non-transitory computer-readable medium
can include electronic, optical, magnetic, or other storage
devices capable of providing the processing device with
computer-readable instructions or other program code. Non-
limiting examples of a non-transitory computer-readable
medium include (but are not limited to) magnetic disk(s),
memory chip(s), ROM, random-access memory (“RAM”),
an ASIC, a configured processor, optical storage, and/or any
other medium from which a computer processor can read
instructions. The instructions may include processor-specific
instructions generated by a compiler and/or an interpreter
from code written in any suitable computer-programming
language, including, for example, C, C++, C#, Java, Python,
Perl, JavaScript, etc.
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While the above description describes various embodi-
ments of the invention and the best mode contemplated,
regardless how detailed the above text, the invention can be
practiced in many ways. Details of the system may vary
considerably in its specific implementation, while still being
encompassed by the present disclosure. As noted above,
particular terminology used when describing certain features
or aspects of the invention should not be taken to imply that
the terminology is being redefined herein to be restricted to
any specific characteristics, features, or aspects of the inven-
tion with which that terminology is associated. In general,
the terms used in the following claims should not be
construed to limit the invention to the specific examples
disclosed in the specification, unless the above Detailed
Description section explicitly defines such terms. Accord-
ingly, the actual scope of the invention encompasses not
only the disclosed examples, but also all equivalent ways of
practicing or implementing the invention under the claims.

In some embodiments, the systems and methods of the
present disclosure can be used in connection with neurosur-
gical techniques. However, one skilled in the art would
recognize that neurosurgical techniques are a non-limiting
application, and the systems and methods of the present
disclosure can be used in connection with any biological
tissue. Biological tissue can include, but is not limited to, the
brain, muscle, liver, pancreas, spleen, kidney, bladder, intes-
tine, heart, stomach, skin, colon, and the like.

The systems and methods of the present disclosure can be
used on any suitable multicellular organism including, but
not limited to, invertebrates, vertebrates, fish, bird, mam-
mals, rodents (e.g., mice, rats), ungulates, cows, sheep, pigs,
horses, non-human primates, and humans. Moreover, bio-
logical tissue can be ex vivo (e.g., tissue explant), or in vivo
(e.g., the method is a surgical procedure performed on a
patient).

The teachings of the invention provided herein can be
applied to other systems, not necessarily the system
described above. The elements and acts of the various
examples described above can be combined to provide
further implementations of the invention. Some alternative
implementations of the invention may include not only
additional elements to those implementations noted above,
but also may include fewer elements. Further any specific
numbers noted herein are only examples; alternative imple-
mentations may employ differing values or ranges, and can
accommodate various increments and gradients of values
within and at the boundaries of such ranges.

References throughout the foregoing description to fea-
tures, advantages, or similar language do not imply that all
of the features and advantages that may be realized with the
present technology should be or are in any single embodi-
ment of the invention. Rather, language referring to the
features and advantages is understood to mean that a specific
feature, advantage, or characteristic described in connection
with an embodiment is included in at least one embodiment
of the present technology. Thus, discussion of the features
and advantages, and similar language, throughout this speci-
fication may, but do not necessarily, refer to the same
embodiment. Furthermore, the described features, advan-
tages, and characteristics of the present technology may be
combined in any suitable manner in one or more embodi-
ments. One skilled in the relevant art will recognize that the
present technology can be practiced without one or more of
the specific features or advantages of a particular embodi-
ment. In other instances, additional features and advantages
may be recognized in certain embodiments that may not be
present in all embodiments of the present technology.
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What is claimed is:

1. A method of interpreting signals from a brain-machine
interface (BMI), the method comprising:

receiving a first set of neural signals from a brain of a

subject into a BMI decoder;

translating, using a first model in the BMI decoder, the

first set of neural signals into a first command;

detecting, from further neural signals from the subject, a

frustration from the subject;

inhibiting the first command by sending a cancelation of

the first command, the inhibiting based on the detect-
ing;

routing a second set of neural signals from the brain of the

subject to a second model in the BMI decoder based on
the detecting;

interpreting, using the second model, the second set of

neural signals into a second command,; and

sending the second command.

2. The method of claim 1 wherein the second command is
sent to a cursor, a keyboard, a robotic arm, or a wheelchair.

3. The method of claim 1 wherein the neural signals pass
through metal electrodes in a cerebral cortex of the brain.

4. The method of claim 3 further comprising:

converting, through an analog-to-digital converter

(ADC), voltages or currents from the electrodes;
detecting spikes from the voltages or currents; and
forwarding the spikes as the neural signals.

5. The method of claim 1 wherein the first or second
model includes binning neural spikes as a function of
frequency.

6. A method of adjusting an implanted or wearable
brain-machine interface (BMI) device, the method compris-
ing:

receiving neural signals from a brain of a subject into an

implanted or wearable BMI device;

determining an activity change of the subject based on a

sensor;

switching from a first compression algorithm to a second

compression algorithm based on the determined activ-
ity change;

compressing, using the second compression algorithm in

the BMI device, the neural signals into a data streant;
sending the data stream to a BMI controller off-board the
subject.

7. The method of claim 6 wherein the activity change is
a change between the subject interfacing with a graphical
user interface (GUI) to the subject manipulating a physical
device.

8. The method of claim 7 wherein the activity change is
from the subject interfacing with a graphical user interface
(GUI) to the subject manipulating a physical device.

9. The method of claim 7 wherein the interfacing with the
GUI involves moving a cursor, entering text, or selecting
words, and the manipulating a physical device involves
operating a robotic arm or steering a wheelchair.

10. The method of claim 6 wherein the neural signals pass
through metal electrodes in a cerebral cortex of the brain.

11. The method of claim 10 further comprising:

converting, through an analog-to-digital converter

(ADC), voltages or currents from the electrodes;
detecting spikes from the voltages or currents; and
forwarding the spikes as the neural signals.

12. The method of claim 6 wherein the first or second
compression algorithm includes binning neural spikes as a
function of frequency.
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